List 9

More functions of two variables
230. Give the partial derivative of

$$
z=f(x, y)=x y^{3}+x^{5} e^{x y}-2^{x}
$$

with respect to x, which is a new function with two inputs. We can write any of

$$
f_{x}^{\prime}(x, y) \quad f_{x}(x, y) \quad z_{x}^{\prime}(x, y) \quad z_{x}(x, y) \quad f_{x}^{\prime} \quad f_{x} \quad z_{x}^{\prime} \quad z_{x}
$$

for this function.
It may help to think about $\left(a x+x^{5} e^{b x}-2^{x}\right)^{\prime}$, where a, b, c are constants.
231. Give the partial derivative of

$$
z=f(x, y)=x y^{3}+x^{5} e^{x y}-2^{x}
$$

with respect to y, which is a new function with two inputs. We can write any of

$$
f_{y}^{\prime}(x, y) \quad f_{y}(x, y) \quad z_{y}^{\prime}(x, y) \quad z_{y}(x, y) \quad f_{y}^{\prime} \quad f_{y} \quad z_{y}^{\prime} \quad z_{y}
$$

for this function.
It may help to think about $\left(a t^{3}+b e^{c t}-d\right)^{\prime}$, where a, b, c, d are constants.
232. (a) Calculate the partial derivative of $f(x, y)=y^{x}$ with respect to x, which is a function. We can write $f_{x}^{\prime}(x, y)$ or $f_{x}(x, y)$ or f_{x}^{\prime} or f_{x} for this.
(b) Calculate the partial derivative of $f(x, y)=y^{x}$ with respect to y, which is a function. We can write $f_{y}^{\prime}(x, y)$ or $f_{y}(x, y)$ or f_{y}^{\prime} or f_{y} for this.
(c) Calculate the partial derivative of $f(x, y)=y^{x}$ with respect to x at the point $(5,2)$, which is a number. We can write $f_{x}^{\prime}(5,2)$ or $f_{x}(5,2)$ for this.
(d) Calculate the partial derivative of $f(x, y)=y^{x}$ with respect to y at the point $(5,2)$, which is a number. We can write $f_{y}^{\prime}(5,2)$ or $f_{y}(5,2)$ for this.
233. For the function $z=x^{8} y^{2}$, calculate
(a) z_{x}
(d) z_{y}
(g) $z_{x x} z_{y y}-z_{x y} z_{y x}$
(b) $z_{x x}=\left(z_{x}\right)_{x}$
(e) $z_{y x}=\left(z_{y}\right)_{x}$
(c) $z_{x y}=\left(z_{x}\right)_{y}$
(f) $z_{y y}=\left(z_{y}\right)_{y}$

The point $(x, y)=(a, b)$ is a stationary point of $f(x, y)$ if both $f_{x}^{\prime}(a, b)=0$ and $f_{y}^{\prime}(a, b)=0$, where f_{x}^{\prime} and f_{y}^{\prime} are partial derivatives of f. A critical point is where either $f_{x}^{\prime}=f_{y}^{\prime}=0$ or at least one partial d. does not exist.
234. Find the stationary points of

$$
f(x, y)=2 x^{2}\left(x-\frac{3}{2} y-6\right)-3 e^{2 \ln (y)} .
$$

Hint: there are three.
235. Find all stationary points for each of the following functions.
(a) $f(x, y)=e^{7 x}-x y$
(b) $z=x^{3}+8 y^{3}-3 x y$
(c) $f=y \ln \left(x^{2}\right)+x$

The function $D(x, y)=f_{x x}^{\prime \prime} f_{y y}^{\prime \prime}-f_{x y}^{\prime \prime} f_{y x}^{\prime \prime}$ can be used to classify critical points. If $D>0$ and $f_{x x}^{\prime \prime}>0$ at a critical point, then that point is a local minimum. If $D>0$ and $f_{x x}^{\prime \prime}<0$ at a critical point, then that point is a local maximum. If $D<0$ at a critical point then it is not a local extreme (it is a "saddle"). If $D=0$ then the point might be a local extreme but might not be.
236. Find and classify all the critical points of $f(x, y)=2 x^{2}\left(x-\frac{3}{2} y-6\right)-3 e^{2 \ln (y)}$.

To find extreme values of $f(x, y)$ with a condition/restriction, re-write the task as a single-variable extreme value task (see List 6 for those kinds of tasks).
For extreme values of $f(x, y)$ in a polygonal domain, check the value of the function at all critical points inside the domain, at all vertices (corners) of the domain, and use one-variable tasks along each side.
237. Find the smallest and largest values of

$$
f(x, y)=9 x^{2}-6 x-y^{3}-y^{2}+9
$$

on the filled square $0 \leq x \leq 1,0 \leq y \leq 1$ by following these steps:
(a) Find the critical points of $f(x, y)$. Ignore any that do not satisfy $0 \leq x \leq 1$ and $0 \leq y \leq 1$.
(b) Find single-variable-critical-points on the boundary of the square by looking at each side separately.
i. Bottom: when $y=0$, the function is $f=9 x^{2}-6 x-(0)^{3}-(0)^{2}+9$, so use Analysis 1 tools to find when $g(x)=9 x^{2}-6 x+9$ has $g^{\prime}(x)=0$. Remember that-for part (c) below-these are all points (_, 0).
ii. Top: when $y=1$, the function is $f=9 x^{2}-6 x-(1)^{3}-(1)^{2}+9$.
iii. Left: when $x=0$, the function is $f=9(0)^{2}-6(0)-y^{3}-y^{2}+9$, so use Analysis 1 tools to find when $g(y)=9-y^{2}-y^{3}$ has $g^{\prime}(y)=0$.
iv. Right: when $x=1$, the function is $f=9(1)^{2}-6(1)-y^{3}-y^{2}+9$.
(c) Compute the value of f at all points from steps (a) and (b). The largest f-value is the maximum and the most negative f-value is the minimum.
238. Find the extreme values of

$$
z=(x-3)^{2}+(y+1)^{2}-2(y+5-2 x)
$$

on the solid triangular region with vertices $(2,0),(0,2)$, and $(0,-2)$.

